Advanced Information, Computation, Communication II Homework - 9
Spring 2025 Exercise session on Wednesday, April 16

1. Simplify the following congruence classes and decide if they are invertible (multiplica-
tive). If they are, compute their inverse. If they are not, for each [a],, find a congruence
class [b],, such that [a]m,[b]m = [0]m and 0 < b < m.

(a) [13]3s0
| ged(a,b) | a="bq+r lq|a|o|u=0]v=u—q0|
ged(380,13) | 380 =13 x 29+ 3 | 29 -4 117
gcd(13,3) 13=3x4+1 |4 |1|-4] 1 4
gcd(3, 1) 3=1x3+0 |3 /0[1] 0 1
ged(1,0) 12=3x4+0 4 1110

Therefore, 1 = —4 x 380 + 117 x 13 = [1]380 = [117]380[13]380' Which
implies that [117]3g0 is the inverse.
Relevant slides : 409 - 416, 417 - 419

(b) 279999
Solution:

Both 27 and 9999 are divisible by 9 since the sum of their digits is
0Omod 9, so we can deduce that 27 is not invertible mod 9999. Further-
more, 1111 is a number smaller than 9999 and such that [27]ggg9[1111]9999 =

[3]9999 [9999]9999 = [019999-

Relevant slides : 417

(c) [3*a

Solution:

Note that by Euler’s theorem [3%]a9 = [1]29.

Therefore, [3831]yg = [(3%)%][3M]es = [BM]e = [3%29[(3*)%]2 =
[9]29[(_2)3]29 = [—72]29 = [—14]29 = [15]29

Then, [3%3!] is invertible and its inverse is [2]og, since [15]a9[2]29 = [1]29
Relevant slides : 417, 479

(d) [28899]28925




We apply the Euclidean algorithm.

ged(a, b) a=bqg+r
ged(28925,28899) | 28925 = 28899 x 1 + 26
ged (28899, 26) 28899 = 26 x 1111 413
gcd(26,13) 2% =13 x2+0
ged(13,0) = 13

Since ged(28925,28899) = 13, 28899 is not invertible mod 28925. By
computing 28925/13 = 2225 we have found the ”b” that was asked:
[28899]28995[2225] 28925 = [0]28025-

Relevant slides : 409 - 416, 417 - 419

2. Solve for z:
(a) 22x + [63]132 = [19]132

We have

22x + [63]132 = [19]132 <— 22z = [19]132 — [63]132 = [—44]132

Note that [22]132 is not invertible. Because 22 = 2 x 11,132 = 2 x 11 x 6.
Therefore 22z = 0 is true for z = [0]132, [6]132, [12]132. Similarly, 222 = —44 is
true for x = [—2]132, [4]132, [10]132,

Relevant slide : 386

(b) (9999)56 aF [35]100 = [56]100

As in the previous question we have
9999z + [35]1()0 = [56]100 <= 9999x = [21]100. <— —lz = [21]100

—1 is invertible in modulo 100. Therefore, there is only a single solution which
1S [—21]100 = [79]100.
Relevant slide : 386

1. For each of the following RSA parameters, determine if they are valid, and if they are,
compute a valid decoding exponent d.
(a) p=29,g=41,e=09.
(b) p=167, ¢ =97, e =11.
(¢c) p=5,q="T73,e=12T7.




All the numbers p and ¢ are prime, which is good.
The encoding exponent e is valid if it is coprime with k& = lem(p — 1,¢q — 1) (the
least common multiple).

(a) k =lem(p —1,¢ — 1) = 1lem(28,40) = lem(2% x 7,28 x 5) = 22 x5 x 7 =
280. The encoding exponent e is coprime with k£ so it is valid. To find the
decoding exponent, we apply the extended Euclidean algorithm and find that
1 = ged(280,9) =280-1+9-(—31), so d = —31. Instead of this we can as
well use d' = d + k = —31 + 280 = 249 as the decoding exponent.

ged(a, b) a=bqg+r u="0 :(ﬂ—QN)
0cd(280,9) [ 280 =9 x 31+ 1| 1 3T (1) =
ged(9,1) 9=1x94+0 0 1
ged(1,0) 1 0

(b) k=lem(p—1,q — 1) = lem(66,96) = lem(2 x 3 x 11,2° x 3) = 25 x 3 x 11.
The encoding exponent e = 11 is not coprime with k so it is not valid.

(c) k =lem(p — 1, — 1) = lem(4, 72) = lem(22,2% x 3%) = 2% x 32 = 72. The
encoding exponent e = 127 is prime, and is coprime with 72, so it is valid.
The decoding exponent is obtained using the extended Euclidean algorithm:
1 = ged(127,72) = —127 - 17+ 72 - 30, so d = —17. Note that the Bézout
equality (1 = ed + kl) holds as well when replacing d with d 4+ k (and [ with
[ —e). So we can use d + k = 55 as the decoding exponent.

ged(a, b) a=bq+r u=7 v=(tu—qv)
gcd(127 72) | 127=72x 1455 | —17 134+1x17=30
ged(72,55) | T2=55x1+17 | 13 | —4—1x13=-17
ged(55,17) | 55=17x3+4 | —4 | 1-3x (—4) =13
ged(17,4) 17=4x4+1 1 0—4x1=-4
gcd(4,) 4=1x%x440 0 1-4x0=1
ged(1,0) = 1 0

Relevant slides : 527 - 534

2. For the first valid case that you found, what is the ciphertext corresponding to the
plaintext ¢ = 487 Check that the decryption gives you back the correct plaintext.

[)agear = ([48]29441)” = [997])29441. The decoding exponent is 249, and as expected
we find ([997)og.41)" = [48]29.41 = [t]29041-

Relevant slides : 527 - 534

3. For the last valid case that you found, what is the plaintext corresponding to the ci-
phertext ¢ = 847 Hint: You may use a calculator.




[t)z65 = ([cl365)”" = [224]365.

Relevant slides : 527 - 534

Consider the map from class:
Y Z/mnZ — Z/mZ X Z/nZ

that maps each integer 0 < k < mn to ¢(k) = (k mod m, k mod n).

1. Consider the pair (m,n) = (5,7). Fill the 5 x 7 table for the map v just like we did in
class (for other numbers m and n).

The table is
[0 [z |27 [Blx |4 |5z |6l
05 || [0]35 | [15]35 | [30]s5 | [10]35 | [25]35 | [5)as | [20]ss
[1]5 || [21]35 | [1]ss | [16]35 | [31]35 | [11]35 | [26]35 | [6]35
25 || [7las | [22]35 | [2]35 | [17]35 | [32]35 | [12]35 | [27]35
35 || [28]35 | 835 | [23]35 | [3las | [18]35 | [33]35 | [13]as
[4]5 || [14]35 | [29]35 | [9]35 | [24]35 | [4]35 | [19]35 | [34]3s

2. Find 3%%6%58 mod 5.

3546458 mod 5 = (3%)27229 mod 5 = (—1)2"2% mod 5 = —1 mod 5 = 4 mod 5.

3. Find 376458 mod 7.

3546458 mod 7 = 32 (318212 mod 7 =9 - (—1)¥*2 mod 7=9 =2 mod 7.

4. Using your table from [9.3][1] find 3°464°% mod 35.

Read from the table that 1p~1(3%164% mod 5, 354645 mod 7) = ¢~!(4 mod 5,2 mod
7) = (9 mod 35).

In this problem we develop an explicit formula for computing ¢(n) for any positive integer n
in terms of the prime factorization of n.




Recall that by the Chinese Remainder Theorem, if m and n are coprime, then the function
Y Z/mnZ — Z)/mZ X Z/nZ

that maps each integer 0 < k < mn to ¥(k) = (k mod m, k mod n), is a bijection.

1. Show that if k£ is coprime to mn, then k£ mod m is comprime to m and k mod n is
coprime to n.

Since k is coprime to mn, then k has no prime factors in common with m and n.
Let a = kK mod m. Then a = bm + k. Any prime factor of m divides bm but not
k, therefore it does not divide a, which means that a is coprime to m.

The same reasoning applies to b = k mod n.

2. Show that if 0 < a < m is coprime to m and 0 < b < n is coprime to n, then ¢~1(a,b)
is coprime to mn.

Solution:

From the definition of ¢) and the fact that it is bijective, one has that for any (a, b)
there is a unique k = ¢ "'(a,b) with 0 < k& < mn such that a = k mod m and
b = k mod n. Hence, we can write k = bm + a. Since a is coprime to m, any factor
of m divides bm but not a, therefore k£ has no common factors with m. Applying
the same reasoning to b shows that k also has no common factors with n, therefore
k has no common factors with mn, that is, k is coprime to mn.

3. Conclude that if m and n are coprime, then ¢(mn) = ¢(m) ¢(n).

We showed in the previous two points that there is a bijection between the positive
integers less than mn that are coprime to mn and the pairs (a,b) where a is a
positive integer less than m and coprime to m, and b is a positive integer less than
n and coprime to n. Therefore, these two sets have the same cardinality. Also,
the number of positive integers less than mn that are coprime to mn is precisely
¢(mn), and the number of pairs (a,b) where a is a positive integer less than m
and coprime to m, and b is a positive integer less than n and coprime to n is

o(m) - ¢(n). Hence, ¢p(mn) = ¢p(m) ¢(n).

4. Using this result and the fact (seen in class) that ¢(p*) = p* — p*~! for any prime p and
any positive integer k, prove that for any positive integer n,

o= dl()

where the product is over all prime factors of n.
Hint: write n as a product of prime powers, that is, n = p’flpgz oo phm




Following the hint, let n = plflp§2 .- pkm  Any two prime powers are coprime,

therefore we can apply the result of point 3 recursively to get

o(n) = o(p)*) d(p52) - - P(phm)

=110,
Next, using the fact that ¢(p*) = p* — p*~! for any prime power p*, we can write
o(n) = [ =i ™)
10t (-5)
, 1
- [T (-5)

7

-5

which is what we wanted to prove.

In this problem, we study the computational complexity of the decrypting operation in RSA.
Let m = p-q be an RSA modulus where p and ¢ are some large prime numbers. Let e be a
valid RSA encoding exponent, and let d be the corresponding decoding exponent. You know d,
and you receive a ciphertext ¢ for an unknown plaintext ¢ (i.e., [c],, = [t]¢,). We are interested
in finding a fast way to decrypt c.

In the following, suppose that for any non-negative integers x,y and z with z < z and y < z,
the exponentiation z¥ mod 2 can be computed with (log, 2)® elementary operations.

1. About how many elementary operations are performed by the decryption method given
in class? (Hint: only exponentiations are costly, the rest can be neglected.)

The decryption consists in computing the exponentiation ¢? mod m. It takes ap-
proximately (log, m)® elementary operations.

2. In an attempt to go faster, one can try to perform the decryption modulo p and modulo
¢, and combine the results with the Chinese Remainders Theorem (instead of decryp-
ting directly modulo m). To do so, we replace the decoding exponent d by the pair of
exponents d, = d mod (p — 1) and d, = d mod (¢ — 1).

(a) Show that [c]y = [t], and [c]i* = [t],.




Since d, = d mod (p — 1) we can write d = (p — 1)k + d, for some integer k.
d :
We compute [c],” and obtain:

[C]ff” = [Cdp]p = [Cdi(pil)k]p = [Cd]p[ci(pil)k]p = [Cd]p )

where the last equality uses Fermat’s theorem.

RSA says that [¢?],, = [t],,- With the Chinese Remainders Theorem we get
the same but with modulus p instead of pq, i.e., [c], = [t],.

Putting everything together, we obtain that [c]s* = [¢4], = [t],-

We prove the second equality in a similar way.

(b) Describe how to recover [t],, from [t], and [t],.

We use the method seen in class to invert the map of the Chinese Remainders
Theorem. Let ¢, = ¢ mod p and ¢, = ¢t mod ¢. First, we use the extended
Euclidean algorithm to find integers u and v such that pu + qu = 1. Then,

t = qut, + put, mod m.

(¢) About how many elementary operations are performed by this decryption method?
(Hint: again, only exponentiations are costly, the rest can be neglected.)

With this method, two exponentiations are performed: cﬁ” mod p and ch mod
q. This requires a total of (log, p)® + (log, ¢)® elementary operations.

3. How do these two methods compare, assuming that p and ¢ are of the same size (i.e.,
logy p ~ log; q).

The first method costs (log, m)? elementary operations. For the second method,
observe that log, p ~ log, ¢ ~ logTQm. So the number of elementary operations is

(log,m)*  (logym)* 1

(logy p)” + (logz ¢)° ~ ~——= + —7—— = { (logym)".

It is approximately four times faster.




