

Problem 9.1.

1. Simplify the following congruence classes and decide if they are invertible (multiplicative). If they are, compute their inverse. If they are not, for each $[a]_m$ find a congruence class $[b]_m$ such that $[a]_m[b]_m = [0]_m$ and $0 < b < m$.

(a) $[13]_{380}$

Solution:

$\gcd(a, b)$	$a = bq + r$	q	\tilde{u}	\tilde{v}	$u = \tilde{v}$	$v = \tilde{u} - q\tilde{v}$
$\gcd(380, 13)$	$380 = 13 \times 29 + 3$	29			-4	117
$\gcd(13, 3)$	$13 = 3 \times 4 + 1$	4	1	-4	1	-4
$\gcd(3, 1)$	$3 = 1 \times 3 + 0$	3	0	1	0	1
$\gcd(1, 0)$	$12 = 3 \times 4 + 0$	4	1	0		

Therefore, $1 = -4 \times 380 + 117 \times 13 \implies [1]_{380} = [117]_{380}[13]_{380}$. Which implies that $[117]_{380}$ is the inverse.

Relevant slides : 409 - 416, 417 - 419

(b) $[27]_{9999}$

Solution:

Both 27 and 9999 are divisible by 9 since the sum of their digits is 0 mod 9, so we can deduce that 27 is not invertible mod 9999. Furthermore, 1111 is a number smaller than 9999 and such that $[27]_{9999}[1111]_{9999} = [3]_{9999}[9999]_{9999} = [0]_{9999}$.

Relevant slides : 417

(c) $[3^{431}]_{29}$

Solution:

Note that by Euler's theorem $[3^{28}]_{29} = [1]_{29}$.

Therefore, $[3^{431}]_{29} = [(3^{28})^{15}]_{29}[3^{11}]_{29} = [3^{11}]_{29} = [3^2]_{29}[(3^3)^3]_{29} = [9]_{29}[(-2)^3]_{29} = [-72]_{29} = [-14]_{29} = [15]_{29}$.

Then, $[3^{431}]$ is invertible and its inverse is $[2]_{29}$, since $[15]_{29}[2]_{29} = [1]_{29}$

Relevant slides : 417, 479

(d) $[28899]_{28925}$

Solution:

We apply the Euclidean algorithm.

$\gcd(a, b)$	$a = bq + r$
$\gcd(28925, 28899)$	$28925 = 28899 \times 1 + 26$
$\gcd(28899, 26)$	$28899 = 26 \times 1111 + 13$
$\gcd(26, 13)$	$26 = 13 \times 2 + 0$
$\gcd(13, 0) = 13$	

Since $\gcd(28925, 28899) = 13$, 28899 is not invertible mod 28925. By computing $28925/13 = 2225$ we have found the "b" that was asked:
 $[28899]_{28925}[2225]_{28925} = [0]_{28925}$.

Relevant slides : 409 - 416, 417 - 419

2. Solve for x :

$$(a) 22x + [63]_{132} = [19]_{132}$$

Solution:

We have

$$22x + [63]_{132} = [19]_{132} \iff 22x = [19]_{132} - [63]_{132} = [-44]_{132}$$

Note that $[22]_{132}$ is not invertible. Because $22 = 2 \times 11$, $132 = 2 \times 11 \times 6$. Therefore $22x = 0$ is true for $x = [0]_{132}, [6]_{132}, [12]_{132}$. Similarly, $22x = -44$ is true for $x = [-2]_{132}, [4]_{132}, [10]_{132}, \dots$

Relevant slide : 386

$$(b) (9999)x + [35]_{100} = [56]_{100}$$

Solution:

As in the previous question we have

$$9999x + [35]_{100} = [56]_{100} \iff 9999x = [21]_{100} \iff -1x = [21]_{100}$$

-1 is invertible in modulo 100. Therefore, there is only a single solution which is $[-21]_{100} = [79]_{100}$.

Relevant slide : 386

Problem 9.2.

1. For each of the following RSA parameters, determine if they are valid, and if they are, compute a valid decoding exponent d .
 - $p = 29, q = 41, e = 9$.
 - $p = 67, q = 97, e = 11$.
 - $p = 5, q = 73, e = 127$.

Solution:

All the numbers p and q are prime, which is good.

The encoding exponent e is valid if it is coprime with $k = \text{lcm}(p-1, q-1)$ (the least common multiple).

(a) $k = \text{lcm}(p-1, q-1) = \text{lcm}(28, 40) = \text{lcm}(2^2 \times 7, 2^3 \times 5) = 2^3 \times 5 \times 7 = 280$. The encoding exponent e is coprime with k so it is valid. To find the decoding exponent, we apply the extended Euclidean algorithm and find that $1 = \text{gcd}(280, 9) = 280 \cdot 1 + 9 \cdot (-31)$, so $d = -31$. Instead of this we can as well use $d' = d + k = -31 + 280 = 249$ as the decoding exponent.

$\text{gcd}(a, b)$	$a = bq + r$	$u = \tilde{v}$	$v = (\tilde{u} - q\tilde{v})$
$\text{gcd}(280, 9)$	$280 = 9 \times 31 + 1$	1	$0 - 31 \times (1) = -31$
$\text{gcd}(9, 1)$	$9 = 1 \times 9 + 0$	0	1
$\text{gcd}(1, 0)$		1	0

(b) $k = \text{lcm}(p-1, q-1) = \text{lcm}(66, 96) = \text{lcm}(2 \times 3 \times 11, 2^5 \times 3) = 2^5 \times 3 \times 11$. The encoding exponent $e = 11$ is not coprime with k so it is not valid.

(c) $k = \text{lcm}(p-1, q-1) = \text{lcm}(4, 72) = \text{lcm}(2^2, 2^3 \times 3^2) = 2^3 \times 3^2 = 72$. The encoding exponent $e = 127$ is prime, and is coprime with 72, so it is valid. The decoding exponent is obtained using the extended Euclidean algorithm: $1 = \text{gcd}(127, 72) = -127 \cdot 17 + 72 \cdot 30$, so $d = -17$. Note that the Bézout equality ($1 = ed + kl$) holds as well when replacing d with $d + k$ (and l with $l - e$). So we can use $d + k = 55$ as the decoding exponent.

$\text{gcd}(a, b)$	$a = bq + r$	$u = \tilde{v}$	$v = (\tilde{u} - q\tilde{v})$
$\text{gcd}(127, 72)$	$127 = 72 \times 1 + 55$	-17	$13 + 1 \times 17 = 30$
$\text{gcd}(72, 55)$	$72 = 55 \times 1 + 17$	13	$-4 - 1 \times 13 = -17$
$\text{gcd}(55, 17)$	$55 = 17 \times 3 + 4$	-4	$1 - 3 \times (-4) = 13$
$\text{gcd}(17, 4)$	$17 = 4 \times 4 + 1$	1	$0 - 4 \times 1 = -4$
$\text{gcd}(4, 1)$	$4 = 1 \times 4 + 0$	0	$1 - 4 \times 0 = 1$
$\text{gcd}(1, 0) = 1$		1	0

Relevant slides : 527 - 534

2. For the first valid case that you found, what is the ciphertext corresponding to the plaintext $t = 48$? Check that the decryption gives you back the correct plaintext.

Solution:

$[c]_{29*41} = ([48]_{29*41})^9 = [997]_{29*41}$. The decoding exponent is 249, and as expected we find $([997]_{29*41})^{249} = [48]_{29*41} = [t]_{29*41}$.

Relevant slides : 527 - 534

3. For the last valid case that you found, what is the plaintext corresponding to the ciphertext $c = 84$? *Hint: You may use a calculator.*

Solution:

$$[t]_{365} = ([c]_{365})^{55} = [224]_{365}.$$

Relevant slides : 527 - 534

Problem 9.3.

Consider the map from class:

$$\psi : \mathbb{Z}/mn\mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$

that maps each integer $0 \leq k < mn$ to $\psi(k) = (k \bmod m, k \bmod n)$.

1. Consider the pair $(m, n) = (5, 7)$. Fill the 5×7 table for the map ψ just like we did in class (for other numbers m and n).

Solution:

The table is

	$[0]_7$	$[1]_7$	$[2]_7$	$[3]_7$	$[4]_7$	$[5]_7$	$[6]_7$
$[0]_5$	$[0]_{35}$	$[15]_{35}$	$[30]_{35}$	$[10]_{35}$	$[25]_{35}$	$[5]_{35}$	$[20]_{35}$
$[1]_5$	$[21]_{35}$	$[1]_{35}$	$[16]_{35}$	$[31]_{35}$	$[11]_{35}$	$[26]_{35}$	$[6]_{35}$
$[2]_5$	$[7]_{35}$	$[22]_{35}$	$[2]_{35}$	$[17]_{35}$	$[32]_{35}$	$[12]_{35}$	$[27]_{35}$
$[3]_5$	$[28]_{35}$	$[8]_{35}$	$[23]_{35}$	$[3]_{35}$	$[18]_{35}$	$[33]_{35}$	$[13]_{35}$
$[4]_5$	$[14]_{35}$	$[29]_{35}$	$[9]_{35}$	$[24]_{35}$	$[4]_{35}$	$[19]_{35}$	$[34]_{35}$

2. Find $3^{546458} \bmod 5$.

Solution:

$$3^{546458} \bmod 5 \equiv (3^2)^{273229} \bmod 5 \equiv (-1)^{273229} \bmod 5 \equiv -1 \bmod 5 \equiv 4 \bmod 5.$$

3. Find $3^{546458} \bmod 7$.

Solution:

$$3^{546458} \bmod 7 \equiv 3^2 \cdot (3^3)^{182152} \bmod 7 \equiv 9 \cdot (-1)^{182152} \bmod 7 \equiv 9 \equiv 2 \bmod 7.$$

4. Using your table from 9.3.1, find $3^{546458} \bmod 35$.

Solution:

Read from the table that $\psi^{-1}(3^{546458} \bmod 5, 3^{546458} \bmod 7) = \psi^{-1}(4 \bmod 5, 2 \bmod 7) = (9 \bmod 35)$.

Problem 9.4.

In this problem we develop an explicit formula for computing $\phi(n)$ for any positive integer n in terms of the prime factorization of n .

Recall that by the Chinese Remainder Theorem, if m and n are coprime, then the function

$$\psi : \mathbb{Z}/mn\mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$

that maps each integer $0 \leq k < mn$ to $\psi(k) = (k \bmod m, k \bmod n)$, is a bijection.

1. Show that if k is coprime to mn , then $k \bmod m$ is coprime to m and $k \bmod n$ is coprime to n .

Solution:

Since k is coprime to mn , then k has no prime factors in common with m and n . Let $a = k \bmod m$. Then $a = bm + k$. Any prime factor of m divides bm but not k , therefore it does not divide a , which means that a is coprime to m .

The same reasoning applies to $b = k \bmod n$.

2. Show that if $0 < a < m$ is coprime to m and $0 < b < n$ is coprime to n , then $\psi^{-1}(a, b)$ is coprime to mn .

Solution:

From the definition of ψ and the fact that it is bijective, one has that for any (a, b) there is a unique $k = \psi^{-1}(a, b)$ with $0 < k < mn$ such that $a = k \bmod m$ and $b = k \bmod n$. Hence, we can write $k = bm + a$. Since a is coprime to m , any factor of m divides bm but not a , therefore k has no common factors with m . Applying the same reasoning to b shows that k also has no common factors with n , therefore k has no common factors with mn , that is, k is coprime to mn .

3. Conclude that if m and n are coprime, then $\phi(mn) = \phi(m) \phi(n)$.

Solution:

We showed in the previous two points that there is a bijection between the positive integers less than mn that are coprime to mn and the pairs (a, b) where a is a positive integer less than m and coprime to m , and b is a positive integer less than n and coprime to n . Therefore, these two sets have the same cardinality. Also, the number of positive integers less than mn that are coprime to mn is precisely $\phi(mn)$, and the number of pairs (a, b) where a is a positive integer less than m and coprime to m , and b is a positive integer less than n and coprime to n is $\phi(m) \cdot \phi(n)$. Hence, $\phi(mn) = \phi(m) \phi(n)$.

4. Using this result and the fact (seen in class) that $\phi(p^k) = p^k - p^{k-1}$ for any prime p and any positive integer k , prove that for any positive integer n ,

$$\phi(n) = n \prod_p \left(1 - \frac{1}{p}\right)$$

where the product is over all prime factors of n .

Hint: write n as a product of prime powers, that is, $n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$.

Solution:

Following the hint, let $n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$. Any two prime powers are coprime, therefore we can apply the result of point 3 recursively to get

$$\begin{aligned}\phi(n) &= \phi(p_1^{k_1}) \phi(p_2^{k_2}) \cdots \phi(p_m^{k_m}) \\ &= \prod_i \phi(p_i^{k_i}).\end{aligned}$$

Next, using the fact that $\phi(p^k) = p^k - p^{k-1}$ for any prime power p^k , we can write

$$\begin{aligned}\phi(n) &= \prod_i (p_i^{k_i} - p_i^{k_i-1}) \\ &= \prod_i p_i^{k_i} \left(1 - \frac{1}{p_i}\right) \\ &= \left[\prod_i p_i^{k_i} \right] \left[\prod_i \left(1 - \frac{1}{p_i}\right) \right] \\ &= n \prod_i \left(1 - \frac{1}{p_i}\right)\end{aligned}$$

which is what we wanted to prove.

Problem 9.5.

In this problem, we study the computational complexity of the decrypting operation in RSA. Let $m = p \cdot q$ be an RSA modulus where p and q are some large prime numbers. Let e be a valid RSA encoding exponent, and let d be the corresponding decoding exponent. You know d , and you receive a ciphertext c for an unknown plaintext t (i.e., $[c]_m = [t]_m^e$). We are interested in finding a fast way to decrypt c .

In the following, suppose that for any non-negative integers x, y and z with $x < z$ and $y < z$, the exponentiation $x^y \bmod z$ can be computed with $(\log_2 z)^3$ elementary operations.

1. About how many elementary operations are performed by the decryption method given in class? (*Hint: only exponentiations are costly, the rest can be neglected.*)

Solution:

The decryption consists in computing the exponentiation $c^d \bmod m$. It takes approximately $(\log_2 m)^3$ elementary operations.

2. In an attempt to go faster, one can try to perform the decryption modulo p and modulo q , and combine the results with the Chinese Remainders Theorem (instead of decrypting directly modulo m). To do so, we replace the decoding exponent d by the pair of exponents $d_p = d \bmod (p-1)$ and $d_q = d \bmod (q-1)$.
 - (a) Show that $[c]_p^{d_p} = [t]_p$ and $[c]_q^{d_q} = [t]_q$.

Solution:

Since $d_p = d \bmod (p-1)$ we can write $d = (p-1)k + d_p$ for some integer k . We compute $[c]^d_p$ and obtain:

$$[c]^d_p = [c^{d_p}]_p = [c^{d-(p-1)k}]_p = [c^d]_p [c^{-(p-1)k}]_p = [c^d]_p,$$

where the last equality uses Fermat's theorem.

RSA says that $[c^d]_{pq} = [t]_{pq}$. With the Chinese Remainders Theorem we get the same but with modulus p instead of pq , i.e., $[c^d]_p = [t]_p$.

Putting everything together, we obtain that $[c]^d_p = [c^d]_p = [t]_p$.

We prove the second equality in a similar way.

(b) Describe how to recover $[t]_m$ from $[t]_p$ and $[t]_q$.

Solution:

We use the method seen in class to invert the map of the Chinese Remainders Theorem. Let $t_p = t \bmod p$ and $t_q = t \bmod q$. First, we use the extended Euclidean algorithm to find integers u and v such that $pu + qv = 1$. Then,

$$t = qvt_p + put_q \bmod m.$$

(c) About how many elementary operations are performed by this decryption method?
(Hint: again, only exponentiations are costly, the rest can be neglected.)

Solution:

With this method, two exponentiations are performed: $c_p^{d_p} \bmod p$ and $c_q^{d_q} \bmod q$. This requires a total of $(\log_2 p)^3 + (\log_2 q)^3$ elementary operations.

3. How do these two methods compare, assuming that p and q are of the same size (i.e., $\log_2 p \approx \log_2 q$).

Solution:

The first method costs $(\log_2 m)^3$ elementary operations. For the second method, observe that $\log_2 p \approx \log_2 q \approx \frac{\log_2 m}{2}$. So the number of elementary operations is

$$(\log_2 p)^3 + (\log_2 q)^3 \approx \frac{(\log_2 m)^3}{2^3} + \frac{(\log_2 m)^3}{2^3} = \frac{1}{4}(\log_2 m)^3.$$

It is approximately four times faster.