
Advanced Information, Computation, Communication II Homework - 9
Spring 2025 Exercise session on Wednesday, April 16

Problem 9.1.

1. Simplify the following congruence classes and decide if they are invertible (multiplica-
tive). If they are, compute their inverse. If they are not, for each [a]m find a congruence
class [b]m such that [a]m[b]m = [0]m and 0 < b < m.

(a) [13]380

Solution:

gcd(a, b) a = bq + r q ũ ṽ u = ṽ v = ũ− qṽ
gcd(380, 13) 380 = 13× 29 + 3 29 -4 117
gcd(13, 3) 13 = 3× 4 + 1 4 1 -4 1 -4
gcd(3, 1) 3 = 1× 3 + 0 3 0 1 0 1
gcd(1, 0) 12 = 3× 4 + 0 4 1 0

Therefore, 1 = −4 × 380 + 117 × 13 =⇒ [1]380 = [117]380[13]380. Which
implies that [117]380 is the inverse.

Relevant slides : 409 - 416, 417 - 419

(b) [27]9999

Solution:

Both 27 and 9999 are divisible by 9 since the sum of their digits is
0 mod 9, so we can deduce that 27 is not invertible mod 9999. Further-
more, 1111 is a number smaller than 9999 and such that [27]9999[1111]9999 =
[3]9999[9999]9999 = [0]9999.

Relevant slides : 417

(c) [3431]29

Solution:

Note that by Euler’s theorem [328]29 = [1]29.

Therefore, [3431]29 = [(328)15]29[3
11]29 = [311]29 = [32]29[(3

3)3]29 =
[9]29[(−2)3]29 = [−72]29 = [−14]29 = [15]29.

Then, [3431] is invertible and its inverse is [2]29, since [15]29[2]29 = [1]29
Relevant slides : 417, 479

(d) [28899]28925
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Solution:

We apply the Euclidean algorithm.

gcd(a, b) a = bq + r
gcd(28925, 28899) 28925 = 28899× 1 + 26
gcd(28899, 26) 28899 = 26× 1111 + 13
gcd(26, 13) 26 = 13× 2 + 0
gcd(13, 0) = 13

Since gcd(28925, 28899) = 13, 28899 is not invertible mod 28925. By
computing 28925/13 = 2225 we have found the ”b” that was asked:
[28899]28925[2225]28925 = [0]28925.

Relevant slides : 409 - 416, 417 - 419

2. Solve for x:

(a) 22x+ [63]132 = [19]132

Solution:

We have

22x+ [63]132 = [19]132 ⇐⇒ 22x = [19]132 − [63]132 = [−44]132

Note that [22]132 is not invertible. Because 22 = 2 × 11, 132 = 2 × 11 × 6.
Therefore 22x = 0 is true for x = [0]132, [6]132, [12]132. Similarly, 22x = −44 is
true for x = [−2]132, [4]132, [10]132, ....

Relevant slide : 386

(b) (9999)x+ [35]100 = [56]100

Solution:

As in the previous question we have

9999x+ [35]100 = [56]100 ⇐⇒ 9999x = [21]100.⇐⇒ −1x = [21]100

−1 is invertible in modulo 100. Therefore, there is only a single solution which
is [−21]100 = [79]100.

Relevant slide : 386

Problem 9.2.

1. For each of the following RSA parameters, determine if they are valid, and if they are,
compute a valid decoding exponent d.

(a) p = 29, q = 41, e = 9.

(b) p = 67, q = 97, e = 11.

(c) p = 5, q = 73, e = 127.
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Solution:

All the numbers p and q are prime, which is good.
The encoding exponent e is valid if it is coprime with k = lcm(p − 1, q − 1) (the
least common multiple).

(a) k = lcm(p − 1, q − 1) = lcm(28, 40) = lcm(22 × 7, 23 × 5) = 23 × 5 × 7 =
280. The encoding exponent e is coprime with k so it is valid. To find the
decoding exponent, we apply the extended Euclidean algorithm and find that
1 = gcd(280, 9) = 280 · 1 + 9 · (−31), so d = −31. Instead of this we can as
well use d′ = d+ k = −31 + 280 = 249 as the decoding exponent.

gcd(a, b) a = bq + r u = ṽ v = (ũ− qṽ)
gcd(280, 9) 280 = 9× 31 + 1 1 0− 31× (1) = −31
gcd(9, 1) 9 = 1× 9 + 0 0 1
gcd(1, 0) 1 0

(b) k = lcm(p− 1, q − 1) = lcm(66, 96) = lcm(2× 3× 11, 25 × 3) = 25 × 3× 11.
The encoding exponent e = 11 is not coprime with k so it is not valid.

(c) k = lcm(p − 1, q − 1) = lcm(4, 72) = lcm(22, 23 × 32) = 23 × 32 = 72. The
encoding exponent e = 127 is prime, and is coprime with 72, so it is valid.
The decoding exponent is obtained using the extended Euclidean algorithm:
1 = gcd(127, 72) = −127 · 17 + 72 · 30, so d = −17. Note that the Bézout
equality (1 = ed+ kl) holds as well when replacing d with d+ k (and l with
l − e). So we can use d+ k = 55 as the decoding exponent.

gcd(a, b) a = bq + r u = ṽ v = (ũ− qṽ)
gcd(127, 72) 127 = 72× 1 + 55 −17 13 + 1× 17 = 30
gcd(72, 55) 72 = 55× 1 + 17 13 −4− 1× 13 = −17
gcd(55, 17) 55 = 17× 3 + 4 −4 1− 3× (−4) = 13
gcd(17, 4) 17 = 4× 4 + 1 1 0− 4× 1 = −4
gcd(4, 1) 4 = 1× 4 + 0 0 1− 4× 0 = 1
gcd(1, 0) = 1 1 0

Relevant slides : 527 - 534

2. For the first valid case that you found, what is the ciphertext corresponding to the
plaintext t = 48? Check that the decryption gives you back the correct plaintext.

Solution:

[c]29∗41 = ([48]29∗41)
9 = [997]29∗41. The decoding exponent is 249, and as expected

we find ([997]29∗41)
249 = [48]29∗41 = [t]29∗41.

Relevant slides : 527 - 534

3. For the last valid case that you found, what is the plaintext corresponding to the ci-
phertext c = 84? Hint: You may use a calculator.
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Solution:

[t]365 = ([c]365)
55 = [224]365.

Relevant slides : 527 - 534

Problem 9.3.

Consider the map from class:

ψ : Z/mnZ → Z/mZ× Z/nZ

that maps each integer 0 ≤ k < mn to ψ(k) = (k mod m, k mod n).

1. Consider the pair (m,n) = (5, 7). Fill the 5× 7 table for the map ψ just like we did in
class (for other numbers m and n).

Solution:

The table is
[0]7 [1]7 [2]7 [3]7 [4]7 [5]7 [6]7

[0]5 [0]35 [15]35 [30]35 [10]35 [25]35 [5]35 [20]35
[1]5 [21]35 [1]35 [16]35 [31]35 [11]35 [26]35 [6]35
[2]5 [7]35 [22]35 [2]35 [17]35 [32]35 [12]35 [27]35
[3]5 [28]35 [8]35 [23]35 [3]35 [18]35 [33]35 [13]35
[4]5 [14]35 [29]35 [9]35 [24]35 [4]35 [19]35 [34]35

2. Find 3546458 mod 5.

Solution:

3546458 mod 5 ≡ (32)273229 mod 5 ≡ (−1)273229 mod 5 ≡ −1 mod 5 ≡ 4 mod 5.

3. Find 3546458 mod 7.

Solution:

3546458 mod 7 ≡ 32 · (33)182152 mod 7 ≡ 9 · (−1)182152 mod 7 ≡ 9 ≡ 2 mod 7.

4. Using your table from 9.3.1, find 3546458 mod 35.

Solution:

Read from the table that ψ−1(3546458 mod 5, 3546458 mod 7) = ψ−1(4 mod 5, 2 mod
7) = (9 mod 35).

Problem 9.4.

In this problem we develop an explicit formula for computing ϕ(n) for any positive integer n
in terms of the prime factorization of n.
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Recall that by the Chinese Remainder Theorem, if m and n are coprime, then the function

ψ : Z/mnZ → Z/mZ× Z/nZ

that maps each integer 0 ≤ k < mn to ψ(k) = (k mod m, k mod n), is a bijection.

1. Show that if k is coprime to mn, then k mod m is comprime to m and k mod n is
coprime to n.

Solution:

Since k is coprime to mn, then k has no prime factors in common with m and n.
Let a = k mod m. Then a = bm + k. Any prime factor of m divides bm but not
k, therefore it does not divide a, which means that a is coprime to m.
The same reasoning applies to b = k mod n.

2. Show that if 0 < a < m is coprime to m and 0 < b < n is coprime to n, then ψ−1(a, b)
is coprime to mn.

Solution:

From the definition of ψ and the fact that it is bijective, one has that for any (a, b)
there is a unique k = ψ−1(a, b) with 0 < k < mn such that a = k mod m and
b = k mod n. Hence, we can write k = bm+a. Since a is coprime to m, any factor
of m divides bm but not a, therefore k has no common factors with m. Applying
the same reasoning to b shows that k also has no common factors with n, therefore
k has no common factors with mn, that is, k is coprime to mn.

3. Conclude that if m and n are coprime, then ϕ(mn) = ϕ(m)ϕ(n).

Solution:

We showed in the previous two points that there is a bijection between the positive
integers less than mn that are coprime to mn and the pairs (a, b) where a is a
positive integer less than m and coprime to m, and b is a positive integer less than
n and coprime to n. Therefore, these two sets have the same cardinality. Also,
the number of positive integers less than mn that are coprime to mn is precisely
ϕ(mn), and the number of pairs (a, b) where a is a positive integer less than m
and coprime to m, and b is a positive integer less than n and coprime to n is
ϕ(m) · ϕ(n). Hence, ϕ(mn) = ϕ(m)ϕ(n).

4. Using this result and the fact (seen in class) that ϕ(pk) = pk − pk−1 for any prime p and
any positive integer k, prove that for any positive integer n,

ϕ(n) = n
∏
p

(
1− 1

p

)
where the product is over all prime factors of n.

Hint: write n as a product of prime powers, that is, n = pk11 p
k2
2 · · · pkmm .
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Solution:

Following the hint, let n = pk11 p
k2
2 · · · pkmm . Any two prime powers are coprime,

therefore we can apply the result of point 3 recursively to get

ϕ(n) = ϕ(pk11 )ϕ(pk22 ) · · ·ϕ(pkmm )

=
∏
i

ϕ(pkii ).

Next, using the fact that ϕ(pk) = pk − pk−1 for any prime power pk, we can write

ϕ(n) =
∏
i

(pkii − pki−1
i )

=
∏
i

pkii

(
1− 1

pi

)
=

[∏
i

pkii

][∏
i

(
1− 1

pi

)]
= n

∏
i

(
1− 1

pi

)
which is what we wanted to prove.

Problem 9.5.

In this problem, we study the computational complexity of the decrypting operation in RSA.
Let m = p · q be an RSA modulus where p and q are some large prime numbers. Let e be a
valid RSA encoding exponent, and let d be the corresponding decoding exponent. You know d,
and you receive a ciphertext c for an unknown plaintext t (i.e., [c]m = [t]em). We are interested
in finding a fast way to decrypt c.
In the following, suppose that for any non-negative integers x, y and z with x < z and y < z,
the exponentiation xy mod z can be computed with (log2 z)

3 elementary operations.

1. About how many elementary operations are performed by the decryption method given
in class? (Hint: only exponentiations are costly, the rest can be neglected.)

Solution:

The decryption consists in computing the exponentiation cd mod m. It takes ap-
proximately (log2m)3 elementary operations.

2. In an attempt to go faster, one can try to perform the decryption modulo p and modulo
q, and combine the results with the Chinese Remainders Theorem (instead of decryp-
ting directly modulo m). To do so, we replace the decoding exponent d by the pair of
exponents dp = d mod (p− 1) and dq = d mod (q − 1).

(a) Show that [c]
dp
p = [t]p and [c]

dq
q = [t]q.
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Solution:

Since dp = d mod (p− 1) we can write d = (p− 1)k + dp for some integer k.

We compute [c]
dp
p and obtain:

[c]dpp = [cdp ]p = [cd−(p−1)k]p = [cd]p[c
−(p−1)k]p = [cd]p ,

where the last equality uses Fermat’s theorem.
RSA says that [cd]pq = [t]pq. With the Chinese Remainders Theorem we get
the same but with modulus p instead of pq, i.e., [cd]p = [t]p.

Putting everything together, we obtain that [c]
dp
p = [cd]p = [t]p.

We prove the second equality in a similar way.

(b) Describe how to recover [t]m from [t]p and [t]q.

Solution:

We use the method seen in class to invert the map of the Chinese Remainders
Theorem. Let tp = t mod p and tq = t mod q. First, we use the extended
Euclidean algorithm to find integers u and v such that pu+ qv = 1. Then,

t = qvtp + putq mod m.

(c) About how many elementary operations are performed by this decryption method?
(Hint: again, only exponentiations are costly, the rest can be neglected.)

Solution:

With this method, two exponentiations are performed: c
dp
p mod p and c

dq
q mod

q. This requires a total of (log2 p)
3 + (log2 q)

3 elementary operations.

3. How do these two methods compare, assuming that p and q are of the same size (i.e.,
log2 p ≈ log2 q).

Solution:

The first method costs (log2m)3 elementary operations. For the second method,

observe that log2 p ≈ log2 q ≈
log2 m

2
. So the number of elementary operations is

(log2 p)
3 + (log2 q)

3 ≈ (log2m)3

23
+

(log2m)3

23
=

1

4
(log2m)3.

It is approximately four times faster.
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